Enhanced VBX Support

by Stephen Posey

One of Delphi’s more interest-
ing and impressive features is
its support for using Visual Basic
custom controls (VBXs) within the
Delphi IDE, such that they behave
pretty much as if they were ‘native’
Delphi controls. Delphi admittedly
only supports VBXs which
conform to the Version 1 specifica-
tion (alimitation that both Borland
C++ and MS-Visual C++ also share,
by the way), but this is not as
restrictive as it may at first sound.
In general, any VBX which doesn’t
make use of the data aware (data-
base access) features of the VBX
specification is (or could be
written to be) a Version 1 VBX.

With all the hullabaloo about
OCXs and 32-bit ‘distributable
object’ component architectures,
it's not clear how much life is
actually left in the VBX model; on
the other hand, the variety and
number of them that are presently
available suggests that 16-bit VBXs
will be with us for a while yet (it
seems unlikely that everyone will
immediately switch to 32-bit
Windows).

VBXs And TVBXControl
Installing a VBX into the Delphi
component palette is a pretty
straightforward process: simply a
matter of picking Options|Install
Components...|VBX and searching
for the .VBX file in question. What
may be less clear is what is actually
going on when one does this.
When a VBX is installed into
Delphi, the installation routine
interprets the contents and behav-
ior of the VBX in terms of a special-
ized VCL component called
TVBXControl. Any time a VBX is
installed in this fashion, the Delphi
VBX installation routine generates
a descendent of TVBXControl that
acts as a wrapper to make the
properties and events which the
VBX supports available in
appropriate Delphi terms. This
component is then compiled into
Delphi’'s COMPLIB.DCL (or a spe-

24

cialized component library if you
specify one), just as any normal
VCL component would be added to
the component palette.

One result of this automaticity
on Delphi’s part is that the gener-
ated TVBXControl descendent is
very generic, because Delphi is
only able to make educated, but
nonetheless somewhat limited,
guesses with regard to the VBX’s
actual capabilities.

As an example, Listing 1 shows
the automatically generated
TVBXControl for the BiSwitch VBX
that comes with Delphi. BiSwitch is
a relatively simple VBX, but, as you
can see Delphi nonetheless gener-
ates a great deal of code for it.
Because documentation of
TVBXControl’s operation is some-
what sparse, I'm still learning
about the more arcane aspects of
all this (like just how the ‘default
init data’ is used, and how the
event passing mechanics work).
However, the really interesting
part for our purposes is the
published section of TBiSwitch.
The published section of a VCL
component is what provides the
design time interface to a VCL
control; whichever properties are
defined here are the ones which
will appear in Delphi’s Object
Inspector when the component is
added to a project.

The Delphi on-line Component
Writer’s Help has this to say about
the TVBXControl Component:
“Unlike other component types,
TVBXControl is not available for you
to create direct descendents. If you
want to create a Delphi component
that derives from a VBX control, first
install the VBX control into the
Component palette as described in
the Delphi User’s Guide. Then, using
the generated component as a
starting point, you can add your own
properties and methods to the VBX
component.”

| would take this a step further
and assert that the automatically
generated VBX component need

The Delphi Magazine

not necessarily be installed in the
component palette at all (at least
not permanently, | confess that |
haven’t found a way to get Delphi
to generate the TVBXControl de-
scendent wrapper code without
first installing the VBX, | suspect
that there may be no such critter).
The main problem with the auto-
matically generated wrappers is
that the properties that are pub-
lished tend to have a cruder, or
more Visual Basic-like, ‘feel’ [Note
1] to them, or just don’t fit well into
the Delphi component ‘idiom’.

| think that, except for the
simplest VBXs, the automatically
generated VBX wrapper should
probably best be treated like the
TCustom... components provided
by the VCL, ie as ancestors for your
own specialized descendent
components. With this in mind, the
automatically generated class
should probably not actually
publish anything. To bring this
about, it’s necessary to edit the
automatically generated code that
Delphi produces [Note 2].

To change the BiSwitch code in
Listing 1 to turn it into an abstract
ancestor component simply move
the published keyword to the end
of the list of properties, so that (for
this example anyway) none of the
properties which are specific to
TBiCustomSwitch would appear in
the Object Inspector if it were
installed onto the component
palette. You could also rename the
component, as | have done in the
file SWITCH2.PAS on the disk. If you
don’t rename the component,
make sure that you never try to
install two components with the
same name [Note 3]).

Descending from this abstract
component gives the programmer
full control over how the compo-
nent will actually appear at design
time. If you do install this compo-
nent, you will find that, despite
moving the published keyword,
some properties still do appear in
the Object Inspector: these are

Issue 6

properties that TvBXControl itself is
inheriting from its ancestor
TComponent. Since TVBXControl de-
scends from TComponent, it also has
access to some generic Delphi
component properties that the
default VBX interpretation does
not include by default; some of
these can be used to make VBXs
more Delphi-like in their design
time and run-time behavior, which
is really the point of all this.

Customising ChartFX

To create a more illustrative (and
complex) example than BiSwitch, |
picked the ChartFX component
(which everyone who owns Delphi
will also have available). | took
Delphi’s default wrapper, moved
the published keyword as de-
scribed above, renamed TChart to
TCustChart and also renamed the
unit to CUSTCHRT.PAS [Note 4].

0 Listing 1

unit Switch;
interface
uses

SysUtils, Classes, Graphics, Forms, Controls,

VBXCtrl, BIVBX;
{ $DEFINE InitTBiSwitch}

{~- Remove space to enable default init data —

See documentation. }
type

{ TBiSwitch }
TBiSwitch = class(TVBXControl)
protected
FOnOn: TBiSwitchOnEvent;
FOnOff: TBiSwitchOffEvent;
{ Event handler }

p
TBiSwitchOnEvent = procedure (Sender:
TBiSwitchOffEvent = procedure (Sender:

TObject) of object;
TObject) of object;

Next, | created a new component
using File | New Component...
called Chart2FXEx which descends
from TCustChart, and placed it on
the VBX tab of the component
palette, saving the new component
unit as CHRTFXEX.PAS.

Finally, within the published
section of Chart2FXEx | then began
to reveal parts of TCustChart (and
TComponent) that made Chart2FXEx
behave more like a native Delphi
component.

In general, there are four types of
properties which you will encoun-
ter in this process. Firstly, those
that you’ll publish ‘as-is’, secondly
those inherited from elsewhere in
the VCL, which aren’t automat-
ically added to VBXs, thirdly those
for which a Delphi property exists
that is equivalent to a VBX
property, but the Delphi property
can be used to make the VBX seem
more native, and lastly those that
can be handled by a VCL

implementation

const

asm

end;
{$ENDIF}
{ TBiSwitch }

procedure Register;

TBiSwitchInitLen
procedure TBiSwitchInitData; near; assembler;

component mechanism in a more
Delphi-like fashion than the auto-
matically generated one [Note 5].

Listing 2 shows one possible set
of custom properties that can be
added to Chart2FXEx, some of which
fall into each of the categories
mentioned above:

1). Unless you’re planning to do
some fancy footwork with the
VBX’s default event handling, it’s
probably best to go ahead and
publish all of the onEvent handler
properties (this provided a minor
snag in publishing one of the VCL
descendent properties which I'll
discuss below). Similarly, any of
the dialog based properties
(AdmD1g, FontD1g, CustTool,
pType) should be passed through
(unless you're into creating your
own property editors for these).
Most Boolean or numeric based
properties (such as Autoincrement,
BottomGap, Decimals...) can also just
be passed on through. It’s really a

{ Default form data for TBiSwitch }
{$IFDEF InitTBiSwitch}

DB $00,$08,$42,$69,$53,$77,$69,$74,$63,$68,$01,$00,$00,$02,$06, $FF
DB $FF,$08,$00,$0A,$00,$00,$00,$00,$0B,$0F,$00,$00,$80,$0C,$08,$42
DB $49,$53,$57,$49,$54,$43,$48,$0D,$00, $0E, $00, $00, $0F, $00,$10,$00
DB $16,$00,$00,$17,$00,$00,$18,$00,$FF

constructor TBiSwitch.Create(AOwner: TComponent);

procedure HandleVBXEvent(var Message: TWMVBXFireEvent); begin
override; FVBXFile := StrNew(’SWITCH.VBX’);
public FVBXClass := StrNew(’BISWITCH’);

constructor Create(AOwner: TComponent); override;
property Index: TVBInteger index 1 read GetIntProp;
published

property Visible;

property ForeColor: TColor index 10 read GetColorProp
write SetColorProp default -2147483640;

property BackColor: TColor index 11 read GetColorProp
write SetColorProp default -2147483633;

property Caption;

property BorderStyle: TVBEnum index 13
read GetEnumProp write SetEnumProp default 0;

property pOn: Boolean index 14 read GetBoolProp
write SetBoolProp;

property TextPosition: TVBEnum index 15
read GetEnumProp write SetEnumProp default 0;

property Font;

property ParentFont;

property TabStop;

property TabOrder;

property DragMode;

property DragCursor;

property OnOn: TBiSwitchOnEvent read FOnOn write FOnOn;

property OnOff: TBiSwitchOffEvent read FOnOff
write FOnOff;

property OnMouseMove;

property OnMouseDown;

property OnMouselUp;

property OnKeyDown;

property OnKeyUp;

property OnKeyPress;

property OnEnter;

property OnExit;

property OnDragOver;

property OnDragDrop;

SetBounds(0, 0, 80, 32);

inherited Create(AOwner);

ControlStyle :=
ControlStyle - [csCaptureMouse, csClickEvents];

TabStop := True;

FVBXFlags := [vfProcessMnemonic];

{$IFDEF InitTBiSwitch}

FHForm := VBXCreateFormFile(TBiSwitchInitLen,
@TBiSwitchInitData);

{$ENDIF}

end;
procedure TBiSwitch.HandleVBXEvent(var Message:

TWMVBXFireEvent);

begin

case Message.VBXEvent~.EventIndex of
: DispatchCustomEvent(FOnOn, Message, 0);
DispatchCustomEvent (FOnOff, Message, 1);

DispatchMouseEvent(OnMouseDown, Message);
DispatchMouseEvent(OnMouseUp, Message);
DispatchKeyEvent(OnKeyDown, Message);
DispatchKeyEvent(OnKeyUp, Message);

CD\IO\UW#(»)ND—'O

begin end; { VCL Handles OnGotFocus }
begin end; { VCL Handles OnLostFocus }
10 begin end { VCL Handles OnDragOver }
él begin end; { VCL Handles OnDragDrop }
end;

end;

{ Designer registration }
procedure Register;
begin

RegisterComponents(’VBX’, [TBiSwitchl);

DispatchMouseMoveEvent (OnMouseMove, Message);

DispatchKeyPressedEvent (OnKeyPress, Message);

property OnEndDrag;
end;

February 1996

end;
end.

The Delphi Magazine

25

unit ChrtFXEx; function TChart2FXEx.GetBorderStyle : TBorderStyle;
interface begin
uses case inherited BorderStyle of
SysUtils, WinTypes, WinProcs, Messages, Classes, 0 : Result := bsNone;
Graphics, Controls, Forms, Dialogs, Menus, 1 : Result := bsSingle;
ChartFX, {import unit for ChartFX constants and function prototypes} end (* case *);
CustChrt; {abstract ChartFX VBX wrapper unit } end;
type , procedure TChart2FXEx.SetBorderStyle(Value :
tefxGridType = TBorderStyle);
(cfxNoGrid, cfxHorzGrid, cfxVertGrid, cfxBothGrid); begin
type case Value of
TcgigtggﬁEx = class(TCustChart) bsNone : inherited BorderStyle := 0;
bsSingle : inherited BorderStyle := 1;
function GetBorderStyle : TBorderStyle; ends(lngage *;? erite oraerstyte
procedure SetBorderStyle(Value : TBorderStyle); end: ’
function GetGrid : tcfxGridType; - . .
procedure SetGrid(Value : tcfxGridType); fun§t1on TChart2FXEx.GetGrid : TcfxGridType;
protected begin . .
public case inherited Grid of
published CHART_NOGRID : Result := cfxNoGrid;
property BorderStyle: TBorderStyle CHART_HORZGRID : Result := cfoorzGr1d;
read GetBorderStyle write SetBorderStyle CHART_VERTGRID : Result := cfxVertGrid;
default bsSingle; CHAET_BOTHERID : Result := cfxBothGrid;
property Grid : tcfxGridType read GetGrid end (* case *);
write SetGrid default cfxNoGrid; end;
property Align; procedure TChart2FXEx.SetGrid(Value : TcfxGridType);
property Hint; begin
property PopupMenu; case Value of
property ParentShowHint; cfxNoGrid : inherited Grid := CHART_NOGRID;
property TabOrder; cfxHorzGrid : inherited Grid := CHART_HORZGRID;
property TabStop; cfxVertGrid : inherited Grid := CHART_VERTGRID;
property OnClick; cfxBothGrid : inherited Grid := CHART_BOTHGRID;
property OnMouseDown; end (* case *);
property OnMouseUp; end;
property OnMouseMove; ; .
property OnRButtonDown; Egg?ﬁdure Register;
end; . RegisterComponents(’VBX’, [TChart2FXEx]1);
procedure Register; il
implementation initialization
end.

0 Listing 2

judgment call whether or not these
should actually have been left
published in TCustChart, or should
be published here; my opinion on
this is that forcing all properties to
have to be explicitly published
here makes TCustChart most
flexible.

2). There are a number of VCL
properties which can make using
VBXs a much more pleasant
experience:

0O Align: One of Delphi’'s most
useful component properties —
publishing this one property
alone can save you awhole slew
of ‘fiddly’ code to get your VBX
to re-size itself with the form
window. The Delphi VBX inter-
preter routines can’t tell from
the VBX itself whether or not
this property is appropriate for
agiven VBX, so you have to add
it yourself [Note 6].

O PopupMenu: I've successfully
managed to get popup menus to
work with a number of other
VBXs that | performed this type

26

of work on, but couldn’t seem to
get it to work with ChartFX. |
then realized that this VBX
exports a built-in OnRButtonDown
event handler which was prob-
ably overriding the VCL handler
for that event. | got around this
by simply adding code to the
event handler to call up the
popup menu when the right
mouse button was clicked.

0O Others that may be appropriate
to add are ParentShowHint and
ParentColor
3). Delphi’s VCL already includes

a property for BorderStyle that has

equivalent functionality to the

BorderStyle property ported from

the VBX, but it looks different from

the VCL property at design time,
and requires wuse of ‘magic
numbers’ to change it at run-time.

Publishing a ‘wrapper’ property

and read and write methods (asin

Listing 1) makes BorderStyle look

like a true Delphi property. There

will probably be few of this kind of
property in your VBX porting
efforts. An interesting exercise
might be to find a way to use

The Delphi Magazine

Delphi’s font property editor as an
alternative to the ChartFX FontD1g.

4). The CHARTFX.INT file (which
should be in your \DELPHN\DOC
directory) provides a large set of
numeric constants that serve to
delineate various properties of
ChartFX. In order to integrate this
information into my custom com-
ponents more easily, | turned
CHARTEX.INT into an import unit
(all I had to do was add end. after
the implementation keyword, save
the file as CHARTFX.PAS and
compile it), which | could add to
the uses clause of my descendent
component.

One of the easiest properties to
handle is the Grid property, which
only has four possible states. To
make this more Delphi-like, |
created a custom enumerated type
(tcfxGridType) which equated to
each of the Grid type values. | pub-
lished an over-riding property of
that type with associated custom
read and write methods. Other
properties of ChartFX which could
be similarly handled are ChartType,
LineStyle and PointType.

Issue 6

After you’ve added or modified
the properties you want your VBX
to have, you can add this new
component to the Component
Palette just like you would any
native VCL component (ie add the
.PAS file you just created, not the
VBX). | hope this gives you an idea
of how it’s possible to treat VBXs in
pretty much the same way as a
native VCL component. Of course,
if you distribute an application that
uses a VBX you still have to include
the .vBX file itself, and any ancillary
files that the VBX requires (check
your VBX’s documentation to find
this out).

The ChartFX VBX is a large and
complex component, with many
opportunities for customization.
I'm similarly investigating the VBXs
which come with Borland’s Visual
Solutions Pack to integrate them
better into Delphi. If there’s
interest, | can publish my findings
in a future piece.

Stephen L Posey works in New
Orleans, USA, he can be contacted
by email at SLP@uno.edu

Notes to the article:

1. Asomewhat nebulous attribu-
tion, | know; it’s really an aesthetic
issue, but then, so much of using
(and programming for!) a GUI is
aesthetic anyway.

2. One feature that I'd really like
to see in future versions of Delphi
is the ability to customize the code
that Delphi generates automat-
ically. While my coding style is
pretty similar to ‘Borland
Standard’, it would still be nice to
be able to make some minor
aesthetic or preferential modifica-
tions. In particular, being able to
modify how the default VBX code
is generated would save a couple of
awkward steps in the procedure
I’'m describing in this article.

3. Delphi’s response to that is
very (and remarkably) unfriendly:
it ends up giving you a completely
empty component palette. The
original has to be rebuilt from
scratch. To protect yourself from
this eventuality (and any others
that might clobber the component
palette), it’s wise to make a backup
copy of COMPLIB.DCL before doing
any serious work with custom

components. Also, since the
abstract component isn’t meant
to be installed into Delphi’'s
Component Palette anyway, the
references to RegisterComponents ()
have become extraneous and can
be removed - leaving them there
won’t hurt anything, however.

4. | then had to compile
CUSTCHRT.PAS to create a .DcU file.
This can be done a couple of differ-
ent ways: either temporarily install
TCustChart into the Component
Palette, which causes Delphi to
compile itas part of COMPLIB.DCL, or
(and this is my preference) add
CUSTCHRT.PAS to a ‘dummy’ project
and do a Compile|Build AT1.

5. There is, of course, a fifth
category: custom properties which
you add yourself, but this is no
different really from adding
custom properties to any VCL
component, and are beyond the
scope of this article.

6. Actually, wanting Align for
another VBX was the original
impetus for my investigating
TVBXControl’s ability to inherit from
TControl in the first place, which
then led to all of this.

	VBXs and TVBXControl
	Customising Chart FX
	Notes to the Article

